量子效率测试仪
PL/EL一体机
Sinton硅片少子寿命测试仪
Sinton硅块少子寿命测试仪
绒面反射率测试仪
3D共聚焦显微镜
清洗制绒工作站
在线四探针方阻测试仪
全自动扫描四探针方阻测试仪
在线薄膜厚度测试仪
晶化率测试仪
Horiba显微共焦拉曼光谱仪
傅里叶红外光谱仪
霍尔效应测试仪
分光光度计
全光谱椭偏仪
Horiba椭圆偏振光谱仪
TLM接触电阻率测试仪
超景深显微镜
网版智能影像测量仪
全自动影像测量仪
卧式拉力机
电池片稳态光衰老化试验箱
电池片紫外老化试验箱
电池片拉脱力综合测试仪
外观检验台
湿漏电测试系统
组件实验室EL测试仪
紫外老化试验箱
稳态光衰老化试验箱
电流连续性监测系统
PID测试系统
旁路二极管测试系统
LeTID测试系统
反向电流过载系统
脉冲电压测试系统
绝缘耐压测试仪
接地连续性测试仪
绝缘耐压接地测试仪
湿热环境试验箱
湿冻环境试验箱
热循环试验箱
动态机械载荷测试机
静态机械载荷测试机
冰雹冲击试验机
引出端强度试验机
霰弹冲击试验机
抗划伤(切割)测试机
剥离试验机
万能材料试验机(单臂)
万能材料试验机(双臂)
光伏玻璃透过率测试仪
醋酸测试试验箱
交联度测试系统
二极管接线盒综合测试仪
落球冲击试验机
半自动四探针
全自动探针式台阶仪
多通道太阳能MPPT系统
Horiba稳瞬态荧光光谱仪
钙钛矿P1激光划线测试仪
钙钛矿在线PL测试仪
钙钛矿在线方阻测试仪
钙钛矿在线膜厚测试仪
钙钛矿工艺检测工作站
手持式IV测试仪
便携式EL测试仪
手持热成像测试仪
户外组件多通道测试系统
光伏逆变器电能质量测试仪
无人机EL检测仪
认证效率高达33.10%,基于宽带隙表面重构技术实现高效钙钛矿/硅串联太阳能电池
日期:2024-12-18浏览量:40
宽带隙钙钛矿太阳能电池对钙钛矿/硅叠层的发展至关重要,但宽带隙钙钛矿太阳能电池表面缺陷多,会导致严重的界面载流子损失和相分离,影响电池性能。研究通过纳米抛光去除富含缺陷的晶体表面,再钝化新暴露的高结晶度表面,最终实现了认证效率33.10%的四端钙钛矿/硅叠层太阳能电池。
钙钛矿太阳能电池的制备
基底清洗和预处理:ITO玻璃基底首先用洗涤剂溶液清洗,然后依次用去离子水、丙酮、异丙醇和乙醇超声清洗20分钟。用高压氮气(N2)干燥后,用氧气等离子体处理10分钟以增加表面能。
空穴传输层(HTL)的制备:将NiOx纳米颗粒分散在去离子水中形成NiOx墨水,旋涂在ITO基底上,150°C下退火10分钟。将Me-4PACz溶解在乙醇中,旋涂在NiOx层上,然后在N2手套箱中100°C退火10分钟。
钙钛矿层的制备:将钙钛矿前驱体溶液旋涂在带有HTLs的基底上,先1000转/分钟旋涂8秒,然后5000转/分钟旋涂30秒,过程中滴加茴香脑以促进钙钛矿晶体生长。旋涂后立即在100°C下退火15分钟。
纳米抛光处理:将样品的玻璃面用石蜡固定在加热台上,保持85°C。使用Al2O3纳米颗粒作为抛光溶液进行抛光,抛光盘以5000转/分钟的速度旋转15-45秒。抛光后再次加热85°C以去除表面残留的抛光液,然后用异丙醇和甲醇的混合溶液清洗。
表面钝化:使用PI溶液进行表面钝化,旋涂后在100°C下退火10分钟。
纳米抛光处理的钙钛矿薄膜的形态和结晶性变化
钙钛矿薄膜在纳米抛光处理前后的形貌和结晶度变化
形态变化:经过纳米抛光处理后,钙钛矿薄膜的表面从粗糙变为超光滑。纳米抛光处理消除了表面的非晶层,暴露出高晶区表面。
纳米抛光的效果:纳米抛光可以精确去除富含缺陷的区域(效果I),抑制钙钛矿的离子迁移和相分离(效果II),减少晶格失配和释放残余晶格应变(效果III),以及由于Br相关和I相关钙钛矿的不同硬度,创造出富含Br的表面(效果IV)。
纳米抛光处理能够显著改善钙钛矿薄膜的表面质量,通过去除表面缺陷、提高结晶性、抑制离子迁移和相分离,以及调整表面组成,这些变化为后续的电子传输层提供了更均匀的接触,有助于提高电池的整体性能。
纳米抛光处理后表面缺陷和离子迁移的抑制
纳米抛光处理对宽带隙钙钛矿薄膜表面缺陷和离子迁移的影响
表面缺陷的减少:经过纳米抛光处理的钙钛矿薄膜中Pb0缺陷的强度显著降低,表明表面缺陷减少。纳米抛光处理后的钙钛矿薄膜显示出更强和更均匀的PL强度,表明表面缺陷减少,载流子复合减少。
载流子寿命的增加:纳米抛光处理后的钙钛矿薄膜的载流子寿命从413纳秒增加到869纳秒,表明非辐射复合减少。
光诱导相分离的抑制:在模拟太阳光(AM1.5G,1太阳)照射下,控制薄膜的PL峰位显著红移,而纳米抛光处理后的薄膜PL峰位没有明显变化,表明纳米抛光有效抑制了光诱导的卤素组分分离。
离子迁移的抑制:在强电场作用下,控制组钙钛矿薄膜的电流随时间显著增加,而纳米抛光处理后的薄膜电流保持稳定,表明纳米抛光处理有效抑制了离子迁移。
光稳定性的提高:在30V偏压下老化后,控制组钙钛矿薄膜的PL强度显著降低,而纳米抛光处理后的薄膜仍然显示出强且均匀的荧光,表明纳米抛光处理提高了钙钛矿薄膜的光稳定性。
纳米抛光处理后的钙钛矿薄膜特性分析
纳米抛光处理钙钛矿薄膜及其与C60界面的特性
纳米抛光处理后的钙钛矿薄膜的残余应力从20.90 MPa降低到10.47 MPa,表明纳米抛光有效地释放了钙钛矿薄膜中的残余应力。
钙钛矿薄膜的接触电势差(CPD)分布更加均匀,表明功函数降低。紫外光电子能谱(UPS)结果显示,纳米抛光处理后钙钛矿薄膜的费米能级和导带最小值(CBM)发生了变化,与C60的能级排列更好,有助于电子传输和提高电池的填充因子(FF)。
纳米抛光处理不仅改善了钙钛矿薄膜的表面质量,还通过减少残余应力、增加表面溴含量、提高薄膜硬度和优化能级排列,显著提高了钙钛矿薄膜的性能。这些改进有助于提高钙钛矿太阳能电池的开路电压(VOC)和填充因子(FF),从而提高了电池的整体效率和稳定性。
宽带隙钙钛矿太阳能电池的光电性能
基于表面重构处理的宽带隙钙钛矿太阳能电池的光电性能
4T钙钛矿/硅串联太阳能电池的光伏参数
在氮气环境中,表面重构处理后的钙钛矿太阳能电池在1太阳光照射下的操作稳定性测试显示,经过1505小时后,电池保持了其原始效率的80%,远高于控制组的746小时,证明了表面处理显著提高了电池的长期稳定性。
四端钙钛矿/硅叠层太阳能电池,通过将半透明的钙钛矿顶电池与硅底电池物理堆叠实现。
J-V曲线和外部量子效率(EQE)谱表明,钙钛矿顶电池和硅底电池在四端配置中均表现出良好的性能,实现了33.10%的认证效率。纳米抛光处理不仅提高了钙钛矿薄膜的表面质量,还显著提升了钙钛矿太阳能电池的VOC、FF和整体效率。
本研究通过创新的纳米抛光表面重构方法,显著提升了宽带隙钙钛矿太阳能电池的性能,实现了高达33.10%的认证效率,同时增强了电池的稳定性。这一突破不仅推动了钙钛矿太阳能电池技术的发展,也为未来高效率太阳能电池的商业化应用铺平了道路。
联系电话:400 008 6690
在钙钛矿太阳能电池的研究中,长期稳定性是一个关键的考量因素。为了模拟实际环境中的光照条件并评估钙钛矿材料的耐久性。美能紫外老化试验箱进行加速老化测试。该试验箱能够提供280至400nm范围内的紫外光谱,模拟太阳光中的紫外部分,同时保持150至250W/㎡的辐照强度,以加速老化过程。
辐照强度:150-250W/㎡(可定制500-1000W/㎡超级紫外)
UVB含量:3%-9%
光谱范围:280-400nm
通过优化材料配方和电池结构,结合美能紫外老化试验箱的严格测试,可以显著提高钙钛矿太阳能电池的长期稳定性,为商业化应用铺平了道路。
原文出处:Surface reconstruction of wide-bandgap perovskites enables efficient perovskite/ silicon tandem solar cells