量子效率测试仪
PL/EL一体机
Sinton硅片少子寿命测试仪
Sinton硅块少子寿命测试仪
绒面反射率测试仪
3D共聚焦显微镜
清洗制绒工作站
在线四探针方阻测试仪
全自动扫描四探针方阻测试仪
在线薄膜厚度测试仪
晶化率测试仪
Horiba显微共焦拉曼光谱仪
傅里叶红外光谱仪
霍尔效应测试仪
分光光度计
全光谱椭偏仪
Horiba椭圆偏振光谱仪
TLM接触电阻率测试仪
超景深显微镜
网版智能影像测量仪
全自动影像测量仪
卧式拉力机
电池片稳态光衰老化试验箱
电池片紫外老化试验箱
电池片拉脱力综合测试仪
外观检验台
湿漏电测试系统
组件实验室EL测试仪
紫外老化试验箱
稳态光衰老化试验箱
电流连续性监测系统
PID测试系统
旁路二极管测试系统
LeTID测试系统
反向电流过载系统
脉冲电压测试系统
绝缘耐压测试仪
接地连续性测试仪
绝缘耐压接地测试仪
湿热环境试验箱
湿冻环境试验箱
热循环试验箱
动态机械载荷测试机
静态机械载荷测试机
冰雹冲击试验机
引出端强度试验机
霰弹冲击试验机
抗划伤(切割)测试机
剥离试验机
万能材料试验机(单臂)
万能材料试验机(双臂)
光伏玻璃透过率测试仪
醋酸测试试验箱
交联度测试系统
二极管接线盒综合测试仪
落球冲击试验机
半自动四探针
全自动探针式台阶仪
多通道太阳能MPPT系统
Horiba稳瞬态荧光光谱仪
钙钛矿P1激光划线测试仪
钙钛矿在线PL测试仪
钙钛矿在线方阻测试仪
钙钛矿在线膜厚测试仪
钙钛矿工艺检测工作站
手持式IV测试仪
便携式EL测试仪
手持热成像测试仪
户外组件多通道测试系统
光伏逆变器电能质量测试仪
无人机EL检测仪
光伏组件的长期稳定性:EVA、POE、EPE、PVB胶膜性能的深入分析
日期:2024-12-20浏览量:1135
太阳能组件的性能及使用寿命与封装材料的性能息息相关,因此研究它们的性能也是光伏组件研究过程中的重点之一。对目前市场主流的四种封装胶膜:EVA、POE、EPE、PVB,对比分析它们的耐老化性能,PVB胶膜抗老化性能优异,EVA胶膜初始性能好但抗老化性能偏弱。「美能光伏」紫外老外试验箱、温湿度综合环境箱、湿冻环境试验箱等一系列环境箱检测设备,可模拟外界的温湿度、UV等环境因素,对封装材料进行稳定性测试。
四种主流封装胶膜
EVA 胶膜:由乙烯-醋酸乙烯酯共聚物树脂制成,是市场占比最大的光伏组件封装材料,通过高压聚合引入乙酸乙烯酯基团,其含量影响胶膜性能,通常含量为28%-33%。
EVA 胶膜技术成熟且成本较低,作为光伏组封装胶膜具有以下优点:
n 对光伏玻璃、太阳电池、背板的粘接性强
n 溶体流动性好及熔融温度低
n 透光率高
n 柔软性好,层压加工时对太阳电池的损害小
n 耐候性较好
POE 胶膜:由乙烯和1-辛烯聚合而成的无规共聚物弹性体,具有熔点低、分子量分布窄、长支链等特点。在乙烯-辛烯共聚物体系中,辛烯单元可随意接到乙烯主链上,使其具有优异的机械性能和透光率等。
水汽阻隔性好:水汽透过率是EVA的1/8左右,分子链结构稳定,老化速度较慢,能在高温高湿环境下更好地保护太阳电池不受水汽侵蚀,使太阳能组件具有更好的抗PID性能。
耐候性优秀:分子链中无可水解的酯键,在老化过程中不会因水解产生酸性物质。
EPE 共挤胶膜:EPE 共挤胶膜是为解决 POE 胶膜在应用中出现的问题而研发的一种封装胶膜。POE胶膜层压时助剂易析出导致胶膜使用过程中打滑,影响产品良品率,因此将EVA和POE以多层共挤出的方式形成EVA/POE/EVA多层共挤胶膜。
兼具两种材料优点:既具备POE的阻水性、抗PID性能,又具备EVA的高粘接性等特点。
工艺控制难度大:聚烯烃弹性体(POE)为非极性分子,乙烯 - 醋酸乙烯共聚物(EVA)为极性分子,两种树脂的交联反应活性、熔体粘度和剪切熔体升温速率差异明显,简单共挤工艺难以有效控制品质。
PVB 胶膜:在光伏组件封装领域,尤其是光伏建筑一体化(BIPV)组件封装中具有显著优势。由聚醋酸乙烯水解或醇解生成的聚乙烯醇与正丁醛经酸催化缩合而成的热塑性高分子材料,具有可回收重复加工性,且无需交联反应。
粘结与机械性能强:与玻璃具有很强的粘结力,且机械强度高。
耐老化性能优异:环境耐老化性能特别优异,在户外使用更有保障,在不影响使用性能的前提下能够保存4年之久,其与玻璃的粘接性和抗冲击性能均优于 EVA 胶膜,且耐老化性能也优于 EVA 胶膜。
力学性能测试
取两块胶膜按特定顺序叠合层压,根据标准采用5型试样,以100mm/min拉伸速度测试拉伸强度及断裂伸长率。
不同封装胶膜的各项性能参数
EVA胶膜:比 POE 更优异,拉伸强度可达 17.62MPa,断裂伸长率为 1595.17%。
POE胶膜:拉伸强度为 15.95MPa,断裂伸长率 1531.47%,力学性能比 EVA 稍差。
EPE共挤胶膜:拉伸强度 15.26MPa,断裂伸长率 1460.41%,介于 EVA 和 POE 之间。
PVB胶膜:基本性能较为优异,拉伸强度达到 25.85MPa,断裂伸长率为 541.83%。
耐老化性能——紫外加速老化测试
用紫外加速老化测试验证耐大气光老化性能,准备材料层压后放入紫外老化箱,控制测试条件,测试老化后胶膜与玻璃的剥离强度和黄变指数。
紫外辐照后样品与玻璃的剥离强度和黄变指数
紫外辐照对胶膜粘接性能有破坏,但比高温高湿环境影响弱,EVA紫外辐照后黄变明显。
剥离强度变化:紫外辐照对胶膜与玻璃的剥离强度有一定破坏,但相较于高温高湿环境,其影响较弱。不同胶膜在紫外辐照后的剥离强度变化趋势不同,如 1#(EVA)、2#(POE)、3#(EPE)和 4#(PVB)样品在紫外辐照后剥离强度均有所下降,但下降程度各异。
黄变指数变化:EVA在紫外辐照后黄变较为明显,这是因为EVA中残余的交联剂在光的作用下分解生成活泼的自由基,与防老化剂(紫外吸收剂)之间发生反应生成了生色基团。其他胶膜在紫外辐照后的黄变指数也有一定变化,但相对EVA较小。
耐老化性能——高温高湿老化测试
将层压后的试样放入恒温恒湿箱中,实验温度为 (85±2)℃,相对湿度85%±5%,持续时间为1000h。
湿热老化后样品与玻璃的剥离强度和黄变指数
四种样品湿热老化后与玻璃剥离强度均下降,PVB 耐湿热老化性能更优异,EPE 介于 EVA 和 POE 之间,EVA 在高温高湿下更易黄变。
剥离强度变化:1#(EVA)、2#(POE)、3#(EPE)和 4#(PVB)样品在湿热老化后与玻璃的剥离强度均有所下降,且随着湿热老化时间的增长,其剥离强度持续下降。
黄变指数变化:各样品的黄变指数随着湿热老化时间增加均有所增大,其中 1# 样品(EVA)的黄变指数增量最大,表明EVA在高温高湿环境下更易发生黄变。
耐老化性能——湿冻老化测试
将层压后的试样放入温湿度循环环境试验箱中,循环中的环境条件为特定的温度和湿度变化,如下图所示,循环次数为20次(一般标准要求至少进行10个高低温循环,此次实验进行20次以更深入评估)。
湿冻老化环境测试温度-湿度条件
湿冻老化后样品与玻璃的剥离强度和黄变指数
剥离强度变化:从图中可以看出,湿冻循环对 1#(EVA)、2#(POE)、3#(EPE)和 4#(PVB)胶膜与玻璃的剥离强度影响不大,四种胶膜在湿冻循环过程中剥离强度相对稳定,未出现明显的大幅下降趋势。
黄变指数变化:四种胶膜在湿冻循环实验后黄变较低,说明胶膜在温度频繁变化后仍能维持较高的性能,对黄变有较好的抵抗能力,在湿气大、温差大的环境下,其光学性能相对稳定。
通过力学性能测试发现PVB基本性能优异,EVA力学性能优于POE,EPE介于两者之间。耐老化性能测试结果综合来看,PVB胶膜抗老化性能出色,EVA胶膜初始性能好但抗老化弱,因其价格优势现为主流材料。随着技术发展,POE和EPE凭借优异耐候性,未来将与 EVA 形成多品种胶膜并存格局,为光伏组件封装提供多样化选择。
美能复合紫外老化试验箱
美能复合紫外老化试验箱进行加速老化测试,该试验箱能够提供280至400nm范围内的紫外光谱,模拟太阳光中的紫外部分,同时保持150至250W/㎡的辐照强度,以加速老化过程。
n 辐照强度:150-250W/㎡(可定制500-1000W/㎡超级紫外)
n 可提供多种温湿度环境模拟
n UVB含量:3%-9%
n 光谱范围:280-400nm
原文出处:不同光伏组件封装胶膜性能对比研究,OI:10.3969/j.issn.1002-087X.2024.09.027